Publications

 

Google Scholar

2016

[48] Z. Shen, M.-P. Nieh, and Y. Li, (2016) Decorating Nanoparticle Surface for Targeted Drug Delivery: Opportunities and Challenges. Polymers, 8(3), 83.

[47] Y. Li, (2016) Reversible wrinkles of monolayer graphene on a polymer substrate: toward stretchable and flexible electronics. Soft Matter, 12, 3202-3213.

[46] Y. Li, S. Tang, M. Kroger, and W.K. Liu (2016) Molecular simulation guided constitutive modeling on finite strain viscoelasticity of elastomers.

Journal of the Mechanics and Physics of Solids, 88, 204-226.

[45] Y. Li, Y Lian, LT Zhang, SM Aldousari, HS Hedia, SA Asiri, WK Liu. (2016) Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus 6 (1), 20150086.

2015

[44] S. Tang*, Y. Li*, Y. Yang, and Z.Y. Guo (2015). The effect of mechanical-driven volumetric change on instability patterns of bilayered soft solids. Soft Matter, 11, 7911-7919. (* Contributed equally)

[43] S. Tang*, Y. Li*, W.K. Liu, N. Hu and Z.Y. Guo (2015). Tensile stress-driven surface wrinkles on cylindrical core-shell soft solids. Journal of Applied Mechanics, 82 (12), 121002. (* Contributed equally)

[42] Y. Li, M. Kroger, and W.K. Liu (2015). Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale, 7, 16631-16646. (Cover Article)

[41] J.F. Zhao, Y. Li and W.K. Liu (2015). Predicting band structure of 3D mechanical metamaterials with complex geometry via XFEM. Computational Mechanics, 55(4), 659-672.

2014

[40] S. Tang*, Y. Li*, W.K. Liu, and X. Huang (2014). Surface ripples of polymeric nanofibers under tension: the crucial role of Poisson’s ratio. Macromolecules, 47(18), 6503-6514. (* Contributed equally)

[39] Y. Li , M. Kroger, and W.K. Liu (2014). Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials, 35, 8467–8478.

[38] Y. Li, W. Stroberg, T.-R. Lee, H. Kim, H. Man, D. Ho, P. Decuzzi, and W.K. Liu (2014). Multiscale modeling and Uncertainty Quantification in nanoparticle based drug/gene delivery. Computational Mechanics, 53, 511-537.

[37] J. Moore*, Y. Li*, D. O’Connor, W. Stroberg, and W.K. Liu (2014). Advancements in multiresolution analysis. International Journal for Numerical Methods in Engineering, 102 (3-4), 784-807. (* Contributed equally)

[36] Greene, M., Y. Li, W. Chen, and W.K. Liu (2014). The archetype-genome exemplar in molecular dynamics and continuum mechanics. Computational Mechanics, 53, 687–737.

[35] Y. Li, M. Kroger, and W.K. Liu (2014). Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles. Soft Matter, 10, 1723–1737.

[34] Steenbakkers, R. J., C. Tzoumanekas, Y. Li, W.K. Liu, M. Kroger, and J. D. Schieber (2014). Primitive-path statistics of entangled polymers: Mapping multi-chain simulations onto singlechain mean-field models. New Journal of Physics, 16, 015027.

2013

[33] Y. Li, B. C. Abberton, M. Kroger, and W.K. Liu (2013). Challenges in Multiscale Modeling of Polymer Dynamics. Polymers, 5(2), 751-832.

2012

[32] Y. Li, S. Tang, B. Abberton, M. Kroger, C. Burkhart, B. Jiang, G. Papakonstantopoulos, M. Poldneff, and W.K. Liu (2012). A Predictive Multiscale Computational Framework for Viscoelastic Properties of Linear Polymers. Polymer, 53(25), 5935-5952.

[31] Y. Li, M. Kroger, and W.K. Liu (2012). Nanoparticle Effect on the Dynamics of Polymer Chains and Their Entanglement Network. Physical Review Letters, 109(11), 118001.

[30] Y. Li, M. Kroger, and W.K. Liu (2012). Nanoparticle Geometrical Effect on Structure, Dynamics and Anisotropic Viscosity of Polyethylene Nanocomposites. Macromolecules, 45(4), 2099-2112.

[29] Y. Li, M. Kroger, and W.K. Liu (2011). Primitive chain network study on uncrosslinked and crosslinked cis-polyisoprene polymers. Polymer, 52(25), 5867-5878.

[28] Y. Li and M. Kroger (2012). A theoretical evaluation of the effects of carbon nanotube entanglement and bundling on the structural and mechanical properties of buckypaper. Carbon, 50(5),1793-1806.

[27] Y. Li and M. Kroger (2012). Computational study on entanglement length and pore size of carbon nanotube buckypaper. Applied Physics Letters, 100, 021907.

[26] Y. Li and M. Kroger (2012). Viscoelasticity of carbon nanotube buckypaper: zipping–unzipping mechanism and entanglement effects. Soft Matter, 8(30), 7822-7830.

2011

[25] Y. Li (2011). Effect of nano inclusions on the structural and physical properties of polyethylene polymer matrix. Polymer, 52(10), 2310–2318.

2010

[24] Y. Yin, Q. Fan, F. Yang, and Y. Li (2010). Super carbon nanotubes, fractal super tubes and fractal super fibres. Materials Science and Technology, 26(11), 1327–1331.

[23] Y. Yin, Y.Li, F. Yang, and Q. Fan (2010). Multiple-cell elements and regular multifractals. Applied Mathematics and Mechanics, 31(1), 55-65.

[22] Y.Li, Y. Yin, Q. Fan, and F. Yang (2010). From fractal to multifractal super fibres and wool fibres with exceptional mechanical properties. Materials Science and Technology, 26(11), 1323-1326.

[21] Y.Li, X. Qiu, Y. Yin, F. Yang, and Q. Fan (2010). The elastic buckling of super-graphene and super-square carbon nanotube networks. Physics Letters A, 374(15), 1773-1778.

[20] Y.Li (2010). Twist-enhanced stretchability of graphene nanoribbons: a molecular dynamics study. Journal of Physics D: Applied Physics, 43(49), 495405.

2009

[19] Y. Yin, F. Yang, Y.Li, and Q. Fan (2009). Fractal geometry and topology abstracted from hair fibers. Applied Mathematics and Mechanics, 30(8), 983-990.

[18] Wang, X., Y.Li, and X. Meng (2009). An estimation method on failure stress of micro thickness Cu film-substrate structure. Science in China Series E: Technological Sciences, 52(8), 2210-2215.

[17] Y.Li, X. Qiu, Y. Yin, F. Yang, and Q. Fan (2009). The specific heat of carbon nanotube networks and their potential applications. Journal of Physics D: Applied Physics, 42(15), 155405.

[16] Y.Li, X. Qiu, Y. Yin, F. Yang, and Q. Fan (2009). Equivalent elastic moduli of a zigzag single-walled carbon nanotube given by uniform radial deformation. Physics Letters A, 373(27), 2368-2373.

[15] Y.Li, X. Qiu, F. Yang, Y. Yin, and Q. Fan (2009). Stretching-dominated deformation mechanism in a super square carbon nanotube network. Carbon, 47(3), 812-819.

[14] Y.Li, X. Qiu, M. Wang, Y. Yin, F. Yang, and Q. Fan (2009). The invariabilities in the free vibrations of carbon nanotube networks with identical boundary conditions. EPL (Europhysics Letters), 88(2), 26006.

2008

[13] Y.Li, X. Wang, and X. Meng (2008). Buckling behavior of metal film/substrate structure under pure bending. Applied Physics Letters, 92, 131902.

[12] Y.Li, X. Wang, and Q. Fan (2008). Effects of elastic anisotropy on the surface stability of thin film/substrate system. International Journal of Engineering Science, 46(12), 1325-1333.

[11] Y.Li and X. Wang (2008). Investigation on Characteristics of Structure and Simulation analysis for Dragonfly Wing Vein. Advanced Materials Research, 33, 785-788.

[10] Y.Li, X. Qiu, F. Yang, X. Wang, Y. Yin, and Q. Fan (2008). Chirality independence in critical buckling forces of super carbon nanotubes. Solid State Communications, 148(1-2), 63-68.

[9] Y.Li, X. Qiu, F. Yang, X. Wang, Y. Yin, and Q. Fan (2008). A comprehensive study on the mechanical properties of super carbon nanotubes. Journal of Physics D: Applied Physics, 41, 155423.

[8] Y.Li, X. Qiu, F. Yang, X. Wang, and Y. Yin (2008). Ultra-high sensitivity of super carbon nanotube-based mass and strain sensors. Nanotechnology, 19, 165502.

[7] Y.Li, X. Qiu, F. Yang, X. Wang, and Y. Yin (2008). The effective modulus of super carbon nanotubes predicted by molecular structure mechanics. Nanotechnology, 19, 225701.

[6] F. Yang, X. Qiu, Y.Li, Y. Yin, and Q. Fan (2008). Specific heat of super carbon nanotube and its chirality independence. Physics Letters A, 372(46), 6960-6964.

[5] Wang, X., C. Yan, Y.Li, Y. Xue, X. Meng, and B. Wu (2008). SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading. International journal of fracture, 151(2), 269-279.

[4] Wang, X., Y.Li, and Y. Shi (2008). Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein. Composites Science and Technology, 68(1), 186-192.

[3] Wang, X., L. Jin, Y.Li, and X. Guo (2008). Effect of equal channel angular extrusion process on deformation behaviors of Mg-3Al-Zn alloy. Materials Letters, 62(12-13), 1856-1858.

[2] Wang, X., J. Fan, B. Wu, and Y.Li (2008). Effects of Distance and Alignment Holes on Fatigue Crack Behaviors of Cast Magnesium Alloys. Advanced Materials Research, 33, 13-18.

[1] Tang, H., X. Wang, R. Zhao, and Y.Li (2008). Investigation on thermo-mechanical behaviors of artificial muscle films. Journal of Materials Science, 43(10), 3733-3737.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s